-
NeuralKG:浙江大学开源知识图谱表示学习工具
NeuralKG工具包整体基于PyTorch Lightning框架,提供了用于多种知识图谱表示学习模型的通用工作流程,并且高度模块化。NeuralKG具有如下特性: 支持多种方法。 NeuralKG提供了对三类知识图谱嵌入方法的代码实现,包括传统知识图谱嵌入,基于图神经网络的知识图谱嵌入,以及基于规则的知识图谱嵌入。... -
DeepKE:浙江大学基于深度学习的开源中文知识图谱抽取工具
DeepKE是一个开源和可扩展的知识图谱抽取工具,支持常规全监督、低资源少样本和文档级场景,覆盖各种信息抽取任务包括命名实体识别、关系抽取和属性抽取。通过一个统一的框架,DeepKE... -
支持中文的deepdive:斯坦福大学的开源知识抽取工具(三元组抽取)
deepdive是由斯坦福大学InfoLab实验室开发的一个开源知识抽取系统。它通过弱监督学习,从非结构化的文本中抽取结构化的关系数据 。本项目修改了自然语言处理的model包,使它支持中文,并提供中文tutorial。后续将持续更新一些针对中文的优化。 -
SparkSRE-基于Spark的语义推理引擎
SparkSRE是一个基于分布式内存计算框架Spark的语义推理引擎实现方案。该实现方案充分利用了Spark具有的分布式内存抽象弹性分布式数据集RDD,将语义推理的算法转换成在RDD之上的各种变换操作,最终实现面向语义Web领域RDFS规则集、OWL Horst规则集和通用形式规则的语义推理能力。