1 Program Syntax

1.1 Basic notions

For demonstration purposes, consider the following program II with aggregates whose syntax is exactly
accepted by the solver GROC:

uedge(X,Y) : — edge(X,Y). (D)
uedge(Y,X) : — edge(X,Y). (2)
{dhe(X,Y)} : — uedge(X,Y). (3)
i — card[dhe(X,Y) : uedge(X,Y)] >= 2, vtx(Y). 4)

i — card[dhe(X,Y) s uedge(X,Y)] >= 2, vtz(X). (5)

: — wvtx(X), not reached(X). (6)

reached(Y) : — dhe(X,Y), uedge(X,Y), initialvtz(X). 7
reached(Y) : — dhe(X,Y), uedge(X,Y), reached(X), not initialvtz(X). 8)
he(X,Y) : — dhe(X,Y), edge(X,Y). )
he(X,Y) : — dhe(Y, X), edge(X,Y). (10)

i — sumf[he(X,Y) : edgewt(X,Y,Z) = Z] >= W + 1, mazweight(W). (11)

Incidentally, II is a decision version of the traveling salesman program such that we have vtx, edge, edgewt,
initialvtz, and mazweight as its extensional predicates, uedge, reached, and hc as the intensional predi-
cates, and dhc as a choice predicate.
Note that rule (3):
{dhe(X,Y)} : — wedge(X,Y),

is the so-called choice rule. In this rule, given that uedge(X,Y") holds, we choose arbitrarily whether or not
to include dhe(X,Y). In our syntax, we can allow more complicated expressions in the “choice” aggregate
such as

{uedge(Y, X) : dhe(X,Y), dhe(X,Y) : reached(Y)},

where each of “uedge(Y, X) : dhe(X,Y)” and “dhe(X,Y) : reached(Y')” are compound expressions such
that ‘:* acts like a conjunctive operator and are called aggregate bodies (we can have as many compounded
terms and aggregate bodies as we want). Quite simply, a choice predicate is implicitly inferred from the
program by having it declared (in the input instance file) as an intensional predicate but where it does not
appear in a non-aggregate head of a rule (dhc in the case of 1I above).

Still in regards to the choice predicates, note that we can also express rule (3) in terms of the card
aggregate as follows:

card[dhe(X,Y)] > 0 : — wuedge(X,Y), (12)

where card[dhe(X,Y)] > 0 means that there are 0 or more instances of the choice predicate dhc(X,Y)
that can include in the answer set. Note that even if we replace rule (3) above by (12), we still have that dhc
will be inferred from the program as a choice predicate since it is still not mentioned in a non-aggregate head
of a rule.

As in the case of the “choice aggregate,” we also allow in our syntax the more complicated compounded
type of expressions with more than one aggregate bodies, e.g.,

carduedge(Y,X) : dhe(X,Y), dhe(X,Y) : reached(Y)] > 0. (13)

In fact, we allow this for any of the 5 aggregates we support: count, card, sum, min, and maz. For instance,
consider the sum aggregate below:

sum| he(X1,Y7) : edgewt(X1,Y1, Z1) = Z1, dhe(X2,Ys) : edgewt(Xa, Yo, Zo) = Zo | >= W. (14)



Then we have that (14) is a sum aggregate with two aggregate bodies (made up of compounded terms)
hC(Xl, Yl) : edgewt(Xl, Yl, Zl) = Zl

and
dhe(X,Ys) : edgewt(Xo,Ys, Zo) = Zs.

In this case, we take the sum of all those Z; and Z5 that makes the two aggregate bodies hc(X1,Y7) :
edgewt(X1,Y1, Z1) and dhe(Xa,Ys) : edgewt(Xa, Ya, Zo) true, respectively.
1.2 The left and right comparison operators

In regards to the comparison operators, our current syntax supports aggregates of the following form:'
op[Body,(7) = n1, ..., Bodyx(Z) = mi) < Ny+--+ N, (15)
where:
e OP € {count, card, sum, min, mazx};
e 2€ {<,<,=>,>}

e cach N; (for 1 <4 <) could either be a number constant (as in 0, 1, 2,...etc.) or a variables (as in X,
Y, or 7)),

L —

e each Bodyi(?f) (for 1 < i < k), where Z) denotes the tuple of its “free” variables, are of the form
Pl(fl)) : --~:Pm(17n>) : not Ql(y_1>) ;- :not Qn(;ﬁ) (16)
such that *:* in here behaves like the conjunctive operator;

e as in each of the IV; (for 1 < ¢ <) in the comparison expression, each of the n; (for 1 < j < k) can
either be a number constant or a variable.

In our syntax, we can drop the n; (for 1 < <) terms of the aggregate (as shown in (15)) when op is count
or card ((12) and (13) are examples of this). When the n;’s are left in the COUNT or CARD aggregates, the
n;’s are automatically converted into the number constant ‘1.

Example 1 In this example, we show the difference between the count and card aggregates. Consider the
following aggregate atom

OP[P(X), P(Y)] = 3 (17)

(i.e., note here that P(X ) and P(Y') are two different aggregate bodies), where OP € {count, card}. Then
grounding (17) on the domain {1,2} produces the aggregate with the corresponding multiset

op[P(1),P(2),P(1),P(2)] > 3. (18)
Then in this case, we have that
{P(1), P(2)} = count[P(1), P(2), P(1), P(2)] = 3,

while
{P(1), P(2)} £ card[P(1), P(2), P(1), P(2)] = 3,

since count considers repeated elements while card do not. Thus, the only real difference between count
and card is that the former allows for multiplicities while the latter do not. [

INote that the choice aggregate is not included here since it does not involve comparison expressions.
2More about this notion of “free” variables below.



We also allow in our syntax aggregates of the form
My + -+ My =1 OP[Bodyy(31) =na,..., Bodyp(z) = nx] =1 Ni+---+ Niyp (19)

(i.e., note here that <; and <5 could be different) where, as in each of the IV; (for 1 < i < [5), we have that
each of the M (for 1 < j < [;) are either number constants or variables as well.

Although we allow aggregates with both a left and right comparison expressions, they can only occur in
the head of arule, i.e., as in the following rule:

1 <= sumledgewt(X,Y,Z)=27Z] <= 1:— he(X,Y), (20)
which is actually equivalent to
sumledgewt(X,Y,Z) =Z] = 1:— he(X,Y). (1)
But we cannot have something like
reached(Y) : — he(X,Y), 1 <= sumledgewt(X,Y,Z) = 7] <= 1, (22)

since the aggregate atom “1 <= sumledgewt(X,Y,Z) = Z] <= 1”in the body has both a left and right
comparison expression.

In addition to this syntactic restriction, we also require that each aggregate atom must have at least a
right comparison expression! That is, we cannot have an aggregate atom of the form

1 <= sumledgewt(X,Y,Z) = Z] (23)
where the right comparison expression is missing. Note that (23) can simply be expressed as
sumledgewt(X,Y,Z)=Z] >= 1

in our syntax.

1.3 Arithmetic comparison atoms
We also allow in our syntax positive body atoms (i.e., cannot occur in the negative body) of the form
N 2 Xq 4+ Xy, (24)

where N could either be a number constant or a variable, <€ {<,<,=,> >}, and each of the X; (for
1 <9 < k) must be variables, i.e., they cannot be number constants. We call this the arithmetic comparison
atoms. An example of its usage is in the following two rules:

he(X,Y) : — edgewt(X,Y, Z1), edgewt(Y, X, Zy1), 50 > Z1 + Z>. (25)
and

reached(Y) : — he(X,Y), sum[dhe(X1,Y7) : edgewt(X1,Y2,Z) =Z] >= W, W=X+Y. (26)

2 Global and local variables

In our syntax, we classify the variables in a rule into two kinds: global and local. By default, all variables that
are mentioned elsewhere within the rule and outside of an aggregate atom is inferred in the GROC system as
global. For instance, in the following rule

reached(Y) : — he(X,Y), sum[dhe(X, V) : edgewt(U,Y,Z) = Z] >= W,
mazweight(W), (27)



we have that X, Y, and W are global variables in the aggregate atom
sum[dhe(X, V) : edgewt(U,Y,Z) = Z] >= W, (28)

since they are mentioned in the other atoms of the rule (27). In particular, it should be noted that any

occurrence of a variable in a comparison expression will make it a global variable by default. On the other

hand, we have that V', U, and Z are local variables since they are only mentioned within the aggregate atom.
Roughly speaking, we can “loosely” express (27) in terms of classical FOL with aggregates by

VXYW (he(X,Y) A sum[ZUV[1] | dhe(X, V) :edgewt(U,Y, Z)] >= W A mazweight(W)
— reached(Y)), (29

where ZUV[1] denotes that we are taking the first position of all the collected tuple ZUV (i.e., ZUV[1] =
Z) that satisfies “dhc(X,V) : edgewt(U,Y, Z).

In addition, we also view the duplicate occurrences of variables within two distinct aggregate body atoms
as global. For instance, in the following rule

reached(W) : — sumledgewt(X,Y,Z1) = Z1,edgewt(Y, X, Z5) = Zs] >= W,
mazweight(W), (30)

we have that X and Y (along with W) are inferred in the system as global variables and Z; and Zs as local.
Again, intuitively speaking, we can “loosely” represent this in FOL with aggregates as follows:

VXYW (sum[Z1, Zy | edgewt(X,Y, Z1), edgewt(Y, X, Z2)] >= W A mazweight(W)
— reached(W)). 31

If we want to represent (30) where all the variables in the aggregate are local, then we relabel the variables to
end up with the following rule:

reached(W) : — sumledgewt(X1,Y1,Z1) = Z1, edgewt (Yo, Xo, Z) = Zo] >= W,
mazweight(W), (32)

such that we can now again “loosely” represent (32) in FOL with aggregate as follows:

VW(sum[ZleYngYg[l], Z2X1§/1X2Y2[1] \edgewt(Xl,Yl, Zl)7 edgewt(Yg,Xg,Zg)] >= W
A mazweight(W) — reached(W)) (33)

(note that in this case, W is the only global variable).
As another example, in the rule

reached(W1) : — sumledgewt(X,Y,Z1) = Z1] >= Wh,ledgewt(Y, X, Zy) = Z3] >= W,
mazweight(W1), mazweight(Ws), (34)
we have that X and Y (and along with W; and W5) are global variables with Z; and Z, being local. The

reason that X and Y are global in this case is because they are mentioned in two distinct aggregate atoms in
the rule. Again, we can “loosely” express this in FOL with aggregate as follows:

VXYW Wy (sum| Zy ledgewt(X,Y, Z1)] >= Wi A sum|[Zs | edgewt(X,Y, Zs)] >= Wh
A mazweight(Wy) A mazweight(Ws) — reached(Ws)).

It should be noted that although we have some restrictions in our syntax, it is powerful enough to express all
the benchmark programs.



